

TESCOE

2nd NuMI Off-Axis Experiment
Detector Workshop
Argonne National Laboratory
April 25-27

Gary Feldman

Origin

- At the Stanford Workshop, I was asked to propose a method of making a choice of technologies.
- Experienced in academic procedures, I proposed appointing a committee.
- Subsequently, my punishment was being asked to chair the committee.

Name

- Stan Wojcicki suggested the name TESCOE, to stand for "TEchnical Steering Committee for the Off-axis Experiment."
- Peter Litchfield pointed out that TESCOE in the UK was equivalent to Wal-Mart.
- I took this to mean that the committee was dedicated to building a cost-effective detector.

Membership

- Prior to this meeting
 - Ed Blucher, Chicago
 - Marty Breidenbach, SLAC
 - Gary Feldman, Harvard (chair)
 - Bob Kephart, Fermilab
 - Jim Kilmer, Fermilab
 - Mark Messier, Indiana
 - Kate Scholberg, MIT
 - Mike Shaevitz, Columbia
 - Stan Wojcicki, Stanford
- At this meeting I co-opted
 - Leslie Camilleri, CERN, on sabbatical at Fermilab
 - Jeff Nelson, Fermilab
 - Adam Para, Fermilab
 - Gina Rameika, Fermilab

CostCom

- A separate committee has been established to cost the various options.
- Membership:
 - James Grudzinski, Argonne
 - Bob Kephart, Fermilab
 - Jim Kilmer, Fermilab
 - Doug Michael, Caltech
 - Rob Plunkett, Fermilab
 - Dave Pushka, Fermilab
 - Gina Rameika, Fermilab (chair)
 - Rich Stanek, Fermilab

Goal

- To recommend the technology that will
 - For a fixed physics goal, cost the least, and
 - Be buildable on a reasonable time scale, and
 - Have a high probability of meeting its technical goals.
- The physics goal I suggest at Stanford was a 3 ☐ discovery at the level of sin²2 ☐ 13 = 0.01.
 - Normal hierarchy (+30%)
 - □ = 0 (mid-range)
 - $\Box m_{13}^2 = 3 \times 10^{-3} \text{ eV}^2$
 - 5 years at 4 x 10²⁰ pot/yr
- I think this should be the minimum.

Technologies

Liquid Argon

- Enormous potential, but too much schedule and technical risk to be considered for this project. R&D should be strongly encouraged.
- RPCs and Scintillator, general issue
 - Containers vs. monolithic
- RPCs
 - Full scale prototypes
- Scintillator
 - Mostly well understood.
 - Liquid vs. solid is an optimization
 - Understanding APDs critical for design

Timetable

- At Stanford I suggested
 - Hold a workshop in April
 - Appoint a technical review committee
 - Committee makes a technology recommendation to a summer workshop
 - Prepare a proposal for the November PAC meeting
- Is this the right strategy, or should we continue with two technology options?

Discussion

- Gina on costing and discussion
- Discussion of points raised
 - General issues
 - RPC issues
 - Scintillator issues
 - Timetable and strategy
 - Other issues